
Optimistic, Signature-Free Reliable 
Broadcast and Its Applications
Nibesh Shrestha
Supra Research

Qianyu Yu
Hong Kong University of 
Science and Technology

Aniket Kate
Purdue University and 

Supra Research

Giuliano Losa
Stellar Development 

Foundation

Kartik Nayak
Duke University

Xuechao Wang
Hong Kong University of 
Science and Technology



This work

Tolerates 33% Byzantine failures

Fast-path latency 2δ under 17% Byzantine failures
(optimal)

Degrades to 3δ under 33% Byzantine failures

Existing optimally-resilient algorithms

Tolerate 33% Byzantine failures

Latency of 3δ even without failures

We propose a new signature-free, asynchronous Byzantine Reliable 
Broadcast (RBC) algorithm that can improve the latency of many 
protocols and help achieve post-quantum security efficiently
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Many protocols rely on RBC, thus improving it can have a large impact

We apply our algorithm to reduce optimistic latency by one message delay and/or 
achieve post-quantum security efficiently in five distributed-computing schemes:

● Balanced RBC
● Asynchronous verifiable information dispersal (AVID)
● Asynchronous verifiable secret sharing (AVSS)
● Asynchronous complete secret sharing (ACSS)
● DAG-based BFT consensus with Sailfish++, a variant of Sailfish* that is

post-quantum secure and achieves 3δ optimistic commit latency
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* Shrestha et al. "Sailfish: Towards improving the latency of DAG-based BFT." S&P 2025

We propose a new signature-free, asynchronous Byzantine Reliable 
Broadcast (RBC) algorithm that can improve the latency of many 
protocols and help achieve post-quantum security efficiently



Algorithms with improved latency are important: users are sensitive to 
latency, and it often cannot be improved by just adding more resources

“In retail, we see that for every one second delay in page load time, conversions 
can fall by up to 20%”* 

● Often, one can buy throughput but not latency

*https://blog.google/products/ads/speed-scorecard-impact-calculator/

+1 server

latency is still 4latency is 4
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Byzantine Reliable Broadcasts (RBC) is a fundamental 
broadcast primitive ensuring all-or-nothing message delivery
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asynchronous
 network

● We have n parties among which f are Byzantine and 
the others are honest

● Communication is reliable but asynchronous
● We have a fixed broadcaster party that wants to 

broadcast a payload and we must ensure that:
○ If the broadcaster is honest, then all honest parties 

eventually deliver its message
○ Even if the broadcaster is malicious, either all honest 

parties deliver the same message or no honest party 
delivers any message
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asynchronous
 network

● We have n parties among which f are Byzantine and 
the others are honest

● Communication is reliable but asynchronous
● We have a fixed broadcaster party that wants to 

broadcast a payload and we must ensure that:
○ If the broadcaster is honest, then all honest parties 

eventually deliver the payload
○ Even if the broadcaster is Byzantine, either all honest 

parties eventually deliver the same payload or no 
honest party delivers any payload



In the signature-free setting, parties can only communicate 
“orally” and Byzantine parties can lie about what others said

We rely only on pairwise authenticated channels and not 
authenticated messages

● Post-quantum secure
● Low computational overhead

Bracha’s famous algorithm implements RBC under the 
optimal n > 3f and achieves 3δ latency
(Gabriel Bracha. Asynchronous Byzantine agreement protocols. 1987)
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Other work that achieves a latency of 2δ has non-optimal 
resilience or uses signatures
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resilience Good-case
 latency

Bracha † n > 3f 3

Abraham et al. * n ≥ 4f 2

Abraham et al. * n ≥ 5f-1 2

Imbs and Raynal ‡ n > 5f 2

Folklore n > 3f
+ signatures

2

† Gabriel Bracha. Asynchronous byzantine agreement protocols, 1987
* Abraham et al., Good-Case and Bad-Case Latency of Unauthenticated Byzantine Broadcast, 2021
‡ Imbs and Raynal. Trading off t-resilience for efficiency in asynchronous byzantine reliable broadcast, 2016
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This work n > 3f (2,3)

† Gabriel Bracha. Asynchronous byzantine agreement protocols, 1987
* Abraham et al., Good-Case and Bad-Case Latency of Unauthenticated Byzantine Broadcast, 2021
‡ Imbs and Raynal. Trading off t-resilience for efficiency in asynchronous byzantine reliable broadcast, 2016

RBC algorithm in this work

Optimal resilience to Byzantine failures: n > 3f or 33%

Fast-path with latency 2δ under at most ⌊n/2⌋-f 
Byzantine failures (≈17% asymptotically if n=3f+1)

3δ latency at most if the broadcaster is honest
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Bracha’s algorithm uses 3 logical steps “init”, “echo”, and “ready”
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Each party takes the following steps:
Key ideas to defend against a Byzantine 

broadcaster

No disagreement: any two sets of q=⌈(n+f-1)/2⌉ 
non-broadcaster parties have a common honest 
member because 2q - (f-1) > n-1
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Each party takes the following steps:
Key ideas to defend against a Byzantine 

broadcaster

No disagreement: any two sets of q=⌈(n+f-1)/2⌉ 
non-broadcaster parties have a common honest 
member because 2q - (f-1) > n-1

Eventual agreement: If a party observes 2f+1 
readys for some m, then all observe f+1 readys 
for m and in turn send ready for m

Bracha’s algorithm uses 3 logical steps “init”, “echo”, and “ready”
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Each party takes the following steps: A good-case execution looks like this:

Bracha’s algorithm uses 3 logical steps “init”, “echo”, and “ready”



We allow 2-step delivery upon ⌈n/2⌉+f-1 ≈ 83% nb-echos, and we 
ensure eventual agreement by adding a new “vote” message
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Key ideas to ensure eventual 
agreement under a Byzantine 

broadcaster

If a party observes fd=⌈n/2⌉+f-1 nb-echos for 
some m, no party can observe v=⌈n/2⌉ 
nb-echos for m’ ≠ m because fd+v-(f-1) > n-1

If a party observes ⌈n/2⌉+f-1 nb-echos for 
some m, then all observe > ⌈n/2⌉ nb-echos 
for m and vote for m, which leads to n-f 
readys and then delivery
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We show optimality by contradiction: suppose we can 
deliver in 2δ despite ⌊n/2⌋-f+1 Byzantine failures… 
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We present a new signature-free asynchronous Byzantine Reliable Broadcast algorithm with 
optimal resilience, optimal optimistic latency of 2δ even under 17% Byzantine failures, and 
latency of 3δ up to 33% Byzantine failures

Our algorithm can improve the latency of many distributed-computing schemes and enable 
post-quantum security at low latency. Examples in the paper include:
● Balanced RBC
● Asynchronous verifiable information dispersal (AVID)
● Asynchronous verifiable secret sharing (AVSS)
● Asynchronous complete secret sharing (ACSS)
● Post-quantum secure DAG-based consensus with Sailfish++

Can you apply our optimistic signature-free RBC to improve your protocols?


