Optimistic, Signature-Free Reliable
Broadcast and Its Applications

Nibesh Shrestha
Supra Research

Giuliano Losa
Stellar Development
Foundation

& EERBEAE (M)
¥ THE HONG KONG
llAJJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)

SUPRA

Qianyu Yu

Hong Kong University of
Science and Technology

Kartik Nayak
Duke University

PURDUE

Stellar

Aniket Kate
Purdue University and
Supra Research

Xuechao Wang
Hong Kong University of
Science and Technology

Z Duke

UNIVERSITY

We propose a new signature-free, asynchronous Byzantine Reliable
Broadcast (RBC) algorithm that can improve the latency of many
protocols and help achieve post-quantum security efficiently

Tolerate 33% Byzantine failures

Latency of 30 even without failures

Existing optimally-resilient algorithms

This work

Tolerates 33% Byzantine failures

Fast-path latency 26 under 17% Byzantine failures
(optimal)

Degrades to 30 under 33% Byzantine failures

Latency 30

impossible

Percentage |

Byzantine failures 0%

33%

100%

Latency 26 36 impossible

Percentage | } } >

Byzantine failures ()07 17% 33% 100%

We propose a new signature-free, asynchronous Byzantine Reliable
Broadcast (RBC) algorithm that can improve the latency of many
protocols and help achieve post-quantum security efficiently

Many protocols rely on RBC, thus improving it can have a large impact

We apply our algorithm to reduce optimistic latency by one message delay and/or
achieve post-quantum security efficiently in five distributed-computing schemes:

Balanced RBC

Asynchronous verifiable information dispersal (AVID)

Asynchronous verifiable secret sharing (AVSS)

Asynchronous complete secret sharing (ACSS)

DAG-based BFT consensus with Sailfish++, a variant of Sailfish* that is
post-quantum secure and achieves 30 optimistic commit latency

* Shrestha et al. "Sailfish: Towards improving the latency of DAG-based BFT." S&P 2025

Algorithms with improved latency are important: users are sensitive to
latency, and it often cannot be improved by just adding more resources

“In retail, we see that for every one second delay in page load time, conversions
can fall by up to 20%"*

*https://blog.google/products/ads/speed-scorecard-impact-calculator/

https://blog.google/products/ads/speed-scorecard-impact-calculator/

Algorithms with improved latency are important: users are sensitive to
latency, and it often cannot be improved by just adding more resources

“In retail, we see that for every one second delay in page load time, conversions
can fall by up to 20%"*

Often, one can buy throughput but not latency

latency is 4 latency is still 4
. . . . client)
cient = > : i : / ;
\\ /’ +1 server server 1= o
eeeeee 1 * . +) 2) ' H : H - H
\ ﬁ i server 2 >
server 2 : \ /) \\ / .
H H H H - server 3
erver 3 :) \ / 7
’ ’ : :) server 4 : : :)

*https://blog.google/products/ads/speed-scorecard-impact-calculator/
5

https://blog.google/products/ads/speed-scorecard-impact-calculator/

Byzantine Reliable Broadcasts (RBC) is a fundamental
broadcast primitive ensuring all-or-nothing message delivery

e \We have n parties among which f are Byzantine and —
the others are honest

e Communication is reliable but asynchronous
e \We have a fixed broadcaster party that wants to)
broadcast a payload and we must ensure that: f m}

[

asynchronous
network

Byzantine Reliable Broadcasts (RBC) is a fundamental
broadcast primitive ensuring all-or-nothing message delivery

e \We have n parties among which f are Byzantine and —
the others are honest

e Communication is reliable but asynchronous
e \We have a fixed broadcaster party that wants to v
broadcast a payload and we must ensure that: network
o If the broadcaster is honest, then all honest parties
eventually deliver the payload
o Even if the broadcaster is Byzantine, either all honest @]

parties eventually deliver the same payload or no
honest party delivers any payload

asynchronous

In the signature-free setting, parties can only communicate
“orally” and Byzantine parties can lie about what others said

We rely only on pairwise authenticated channels and not =
authenticated messages

e Post-quantum secure
e Low computational overhead

y
ey

In the signature-free setting, parties can only communicate
“orally” and Byzantine parties can lie about what others said

We rely only on pairwise authenticated channels and not =

authenticated messages

e Post-quantum secure
e Low computational overhead @a

Bracha’'s famous algorithm implements RBC under the
optimal n > 3f and achieves 30 latency

(Gabriel Bracha. Asynchronous Byzantine agreement protocols. 1987)

Other work that achieves a latency of 20 has non-optimal
resilience or uses signatures

resilience Good-case

latency
Bracha T n > 3f 3
Abraham et al. * n = 4f 2
Abraham et al. * n = 5f-1 2
Imbs and Raynal n > 5f 2
Folklore n > 3f 2

+ signatures

1 Gabriel Bracha. Asynchronous byzantine agreement protocols, 1987
* Abraham et al., Good-Case and Bad-Case Latency of Unauthenticated Byzantine Broadcast, 2021
T Imbs and Raynal. Trading off t-resilience for efficiency in asynchronous byzantine reliable broadcast, 2016

10

Previous work that achieves a latency of 26 has non-optimal
resilience or uses signatures

N RBC algorithm in this work
resilience Good-case

latency Optimal resilience to Byzantine failures: n > 3f or 33%
Bracha T n > 3f 3 Fast-path with latency 26 under at most Ln/2]1-f
. . 170 . o
Abraham et al. * n > 4f o Byzantine failures (=17% asymptotically if n=3f+1)
Abraham et al. * n > 5f-1 o 30 latency at most if the broadcaster is honest
Imbs and Raynal I n > 5f 2 Latency | 20 | 30 | impossible
Percen I } } >
FoIhore n=> 3f 2 Byzantir?et;zilf:'gz 0% 17% 33%~ f 100%
+ signatures 2
5] = f
This work n > 3f (2,3)

1 Gabriel Bracha. Asynchronous byzantine agreement protocols, 1987
* Abraham et al., Good-Case and Bad-Case Latency of Unauthenticated Byzantine Broadcast, 2021
T Imbs and Raynal. Trading off t-resilience for efficiency in asynchronous byzantine reliable broadcast, 2016

11

Bracha's algorithm uses 3 logical steps “init”,

party 1

party 2

party 3

party 4

“ready m”

echo”, and “ready”

i deliver m

AN
7

Vv

Vv

12

Bracha's algorithm uses 3 logical steps “init”, “echo”, and “ready”

Each party takes the following steps:

—1
init m or {%—‘ nb-echos
f + 1 echos or readys
for some m for some m

send “init m”
i broadeast send “echo m” send “ready m”
if broadcaster

13

Bracha's algorithm uses 3 logical steps “init”, “echo”, and “ready”

Key ideas to defend against a Byzantine
Each party takes the following steps: broadcaster

No disagreement. any two sets of q=[(n+f-1)/21
init m or [%fﬂ nb-echos non-broadcaster parties have a common honest
f +1 echos or readys member because 2q - (f-1) > n-1

for some m for some m

send “init m”
i broadeast send “echo m” send “ready m”
if broadcaster

14

Bracha's algorithm uses 3 logical steps “init”, “echo”, and “ready”

Key ideas to defend against a Byzantine

Each party takes the following steps: broadcaster

No disagreement. any two sets of q=[(n+f-1)/21

init m or %fﬂ nb-echos or non-broadcaster parties have a common honest
f + 1 echos or readys f + 1 readys 2f + 1 readys
for some m for some m for some m member because 2q - (f-1) > n-1

P Eventual agreement: If a party observes 2f+1
sen mit m
if broadcaster readys for some m, then all observe f+1 readys

for m and in turn send ready for m

send “echo m” send “ready m”

15

Bracha's algorithm uses 3 logical steps “init”, “echo”, and “ready”

Each party takes the following steps:

init m or %H—‘ nb-echos or party |
f + 1 echos or readys f+ 1 readys 2f + 1 readys
for some m for some m for some m party 2
[13pa ”
isferg(joaglé;;g;r send “echo m” send “ready m” party 3
party 4

“Init m”

“echo m”

A good-case execution looks like this:

“ready m”

deliver m

7

rd

O\

\ :

2N

16

We allow 2-step delivery upon n/21+f-1 = 83% nb-echos, and we
ensure eventual agreement by adding a new “vote” message

[”4'5_1-‘ nb-echos or

init m or n+£_1—‘ nb-votes or
f + 1 echos or readys f + 1 readys 2f + 1 readys

for some m for some m for some m

send “init m”
i broadeast send “echo m” send “ready m”
if broadcaster

deliver m if [%] + f — 1 nb-echos for some m

send “vote m” if {%] nb-echos for some m

17

We allow 2-step delivery upon n/21+f-1 = 83% nb-echos, and we
ensure eventual agreement by adding a new “vote” message

init m or

["4'5_1-‘ nb-echos or
n+f—1

5 nb-votes or

f + 1 echos or readys [+ 1 readys 2f + 1 readys
for some m

send “init m”
if broadcaster

for some m for some m

send “echo m” send “ready m”

deliver m if [2] + f — 1 nb-echos for some m

send “vote m” if {%] nb-echos for some m

Key ideas to ensure eventual
agreement under a Byzantine
broadcaster

If a party observes fd=I'n/21+f-1 nb-echos for
some m, no party can observe v=In/21
nb-echos for m’ # m because fd+v-(f-1) > n-1

If a party observes [n/21+f-1 nb-echos for
some m, then all observe > n/271 nb-echos
for m and vote for m, which leads to n-f
readys and then delivery

18

We allow 2-step delivery upon n/21+f-1 = 83% nb-echos, and we
ensure eventual agreement by adding a new “vote” message

init m or

["4'5_1-‘ nb-echos or
n+f—1

5 nb-votes or

f + 1 echos or readys [+ 1 readys 2f + 1 readys
for some m

send “init m”
if broadcaster

for some m for some m

send “echo m” send “ready m”

deliver m if [%] + f — 1 nb-echos for some m

send “vote m” if [%] nb-echos for some m

Key ideas to ensure eventual
agreement under a Byzantine
broadcaster

If a party observes fd=I'n/21+f-1 nb-echos for
some m, no party can observe v=In/21
nb-echos for m’ # m because fd+v-(f-1) > n-1

If a party observes [n/21+f-1 nb-echos for
some m, then all observe > n/271 nb-echos
for m and vote for m, which leads to n-f
readys and then delivery

19

We allow 2-step delivery upon n/21+f-1 = 83% nb-echos, and we
ensure eventual agreement by adding a new “vote” message

init m or

["4'5_1-‘ nb-echos or
n+f—1

5 nb-votes or

f + 1 echos or readys [+ 1 readys 2f + 1 readys
for some m

send “init m”
if broadcaster

for some m for some m

send “echo m” send “ready m”

deliver m if [%] + f — 1 nb-echos for some m

send “vote m” if {%] nb-echos for some m

Key ideas to ensure eventual
agreement under a Byzantine
broadcaster

If a party observes fd=I'n/21+f-1 nb-echos for
some m, no party can observe v=In/21
nb-echos for m’ # m because fd+v-(f-1) > n-1

If a party observes [n/21+f-1 nb-echos for
some m, then all observe > n/271 nb-echos
for m and vote for m, which leads to n-f
readys and then delivery

20

We allow 2-step delivery upon n/21+f-1 = 83% nb-echos, and we
ensure eventual agreement by adding a new “vote” message

init m or

["4'5_1-‘ nb-echos or
n+f—1

5 nb-votes or

f + 1 echos or readys [+ 1 readys 2f + 1 readys
for some m

send “init m”
if broadcaster

for some m for some m

send “echo m” send “ready m”

deliver m if [2] + f — 1 nb-echos for some m

send “vote m” if [%] nb-echos for some m

Key ideas to ensure eventual
agreement under a Byzantine
broadcaster

If a party observes fd=I'n/21+f-1 nb-echos for
some m, no party can observe v=In/21
nb-echos for m’ # m because fd+v-(f-1) > n-1

If a party observes [n/21+f-1 nb-echos for
some m, then all observe > n/271 nb-echos
for m and vote for m, which leads to n-f
readys and then delivery

21

We show optimality by contradiction: suppose we can
deliver in 20 despite Ln/21-f+1 Byzantine failures...

Case of odd n

22

We show optimality by contradiction: suppose we can
deliver in 20 despite Ln/21-f+1 Byzantine failures...

World 3

B delivers 0 in 26
Indistinguishable

to B

World 4 Indistinguishable

Vorlc

p to A and D
V\.Ol“ld 2. i C delivers 1 in 26

all deliver 1 in 2 Indistinguishable

to C

Case of odd n

23

We present a new signature-free asynchronous Byzantine Reliable Broadcast algorithm with
optimal resilience, optimal optimistic latency of 26 even under 17% Byzantine failures, and
latency of 30 up to 33% Byzantine failures

Latency | 25 | 36 | impossible |

Percentage |

Byzantine failures (o7 17% 33% 100%

Our algorithm can improve the latency of many distributed-computing schemes and enable

post-quantum security at low latency. Examples in the paper include:
e Balanced RBC

Asynchronous verifiable information dispersal (AVID)

Asynchronous verifiable secret sharing (AVSS)

Asynchronous complete secret sharing (ACSS)

([J
([J
([J
e Post-quantum secure DAG-based consensus with Sailfish++

Can you apply our optimistic signature-free RBC to improve your protocols?

24

